Quantitative Methods

Multiple Regression

1. The General Multiple Linear Regression Model is:
$Y_{i}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1 i}+\mathrm{b}_{2} \mathrm{X}_{2 i}+\ldots+\mathrm{b}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}+\varepsilon_{\mathrm{i}}$
2. Hypothesis Testing of Regression Coefficient: -
$t=\frac{b_{j}-b_{i}}{s_{\widehat{b}_{j}}}(n-k-1)$ degrees of freedom
3. \quad-value: Smallest level of significance for which the null hypothesis can be rejected.
4. $\quad P$ Value $>a ; H_{0}$ accept ($a=$ Significance level)
5. $\quad P$ Value < $a ; H_{0}$ rejected
6. Confidence Interval:
$\mathrm{b}_{\mathrm{j}} \pm\left(\mathrm{t}_{\mathrm{c}} * \mathrm{~s}_{\hat{b}_{j}}\right)$
7. $S S E=\sum\left(y_{i}-\hat{y}\right)^{2}=\Sigma i^{2}$
$\sigma \varepsilon^{I}=\sigma\left(y_{i}{ }^{-} \hat{y}\right)$
\uparrow

$$
\text { SEE/SER }=\sqrt{\frac{\sum(x-\bar{x})^{2}}{\mathrm{n}-2}}=\sqrt{\frac{\sum\left(\varepsilon_{i}-\overline{\varepsilon_{2}}\right)^{2}}{\mathrm{n}-2}}
$$

If $\overline{\varepsilon_{l}}=0$; then:
$=\sqrt{\frac{\sum \varepsilon_{i}^{2}}{n-2}}=\sqrt{\frac{S S E}{n-2}}=\sqrt{\mathrm{MSE}}$
8. Confidence Interval for A Regression Coefficient:
$\hat{\mathrm{b}}_{\mathrm{j}} \pm\left(\mathrm{t}_{\mathrm{c}} \times \mathrm{s}_{\widehat{\mathrm{b}}_{\mathrm{j}}}\right)$
standard error of b_{i}
use ($n-k-1$) d_{f}
where $K=$ no of independent variables

- $\quad S_{b I}=f_{n}$ [SEE]

9. Confidence interval for $\hat{\mathbf{y}} \rightarrow$ forecasted variables:

$$
\begin{gathered}
\mathrm{Y}=\widehat{\mathrm{Y}} \pm\left(\mathrm{t}_{\mathrm{c}} \times \mathrm{s}_{\mathrm{f}}\right) \\
\downarrow \\
\text { S.E of } \hat{y}
\end{gathered}
$$

TSS = SSE + ESS
SSR RSS
$\sum(y i-\bar{y})^{2}=\sum(y i-\hat{y})^{2}+\sum(\hat{y}-\bar{y})^{2}$
\downarrow
Can't explain
ESS / RSS = the difference that is explained by independent variable.
$R^{2}=\frac{\text { ESS }}{T S S}=\frac{\text { TSS }- \text { SSR }}{\text { TSS }}=1-\frac{\text { SSE } / \text { SSR }}{\text { TSS }}$
\downarrow
Always +ve
10. Predicting the dependent variable:
$\widehat{Y}_{i}=\hat{\mathrm{b}}_{0}+\hat{\mathrm{b}}_{1} \widehat{\mathrm{X}}_{1 i}+\widehat{\mathrm{b}}_{2} \widehat{\mathrm{X}}_{2 i}+\cdots+\widehat{\mathrm{b}}_{\mathrm{k}} \widehat{\mathrm{X}}_{\mathrm{ki}}$
11. The F - Statistics:

F-stat $=\frac{\text { MSR }}{\text { MSE }}$ (one - tailed test)
(RSS/ESS)
Where MSR = mean regression sum of squares
MSE = mean squared error
(SSR/SSE)
12. Coefficient of Determination:
$\mathrm{R}^{2}=\frac{\mathrm{RSS}}{\mathrm{TSS}}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=\frac{\mathrm{TSS}-\text { SSE }}{\text { TSS }}$
13. Adjusted \mathbf{R}^{2} :
$R_{a}^{2}=1-\left[\left(\frac{n-1}{n-k-1}\right) \times\left(1-R^{2}\right)\right]$

Anova Table:

1. $R^{2}=\frac{\mathrm{RSS}}{\mathrm{TSS}}$
$F=\frac{\text { MSR }}{\text { MSE }}$ with k and $n-k-1$ degrees of freedom
MSR $=\frac{\text { RSS }}{K}=\frac{\text { RSS }}{1} ; K=1$ for simple linear regression
MSE $=\frac{\text { SSE }}{n-K-1}=\frac{\text { SSE }}{n-2}$
If $K \geq 1$; R2 > Ra2 (No comparison of R2 \& Ra2)
$R a 2=1-\left[\left(\frac{n-1}{n-k-1}\right)\left(1-R^{2}\right)\right]$

Time-Series Analysis

1. Linear Trend Model:
$y_{+}=b_{0}+b_{1}(t)+\varepsilon_{\dagger}$
2. Ordinary Least Squares (OLS) regression:
$\widehat{\mathrm{Y}}_{\mathrm{i}}=\hat{\mathrm{b}}_{0}+\hat{\mathrm{b}}_{1}(\mathrm{t})$
3. Log-Linear Trend Model:
$y_{+}=e^{b_{0}+b_{1}(t)}$
4. Autoregressive Model (AR):
$X_{t}=b_{0}+b_{1} X_{t-1}+\varepsilon_{+}$
5. AR (p) Model:
$X_{t}=b_{0}+b_{1} X_{t-1}+b_{2} X_{t-2}+b_{p} X_{t-p} \ldots \ldots .+\varepsilon_{t}$
6. Autocorrelation \& Model Fit:
$\mathrm{t}=\frac{\rho_{\left(e_{\mathrm{t}}, e_{-k}\right)}}{\frac{1}{\sqrt{T}}}$
7. Random Walk with A Drift:
$X_{t}=b_{0}+b_{1} X_{t-1}+\varepsilon_{t}$
8. Covariance Stationarity:
$X_{t}=b_{0}+b_{1} X_{t-1}+\varepsilon_{t}$
9. Unit Root Testing for Non-Stationary:
$X_{t}=b_{0}+b_{1} X_{t-1}+\varepsilon$
$X_{t}-X_{t-1}=b_{0}+b_{1} X_{t-1}-X_{t-1+\varepsilon}$
10. First Differencing:
$Y_{+}=X_{t}-X_{t-1}=>Y_{+}=\varepsilon_{\dagger}$
$y_{+}=b_{0}+b_{1} y_{t-1}+\varepsilon_{\dagger}$
11. \quad ARCH (1) Regression Model:
$\hat{\varepsilon}_{\mathrm{t}}^{2}=\mathrm{a}_{0}+\mathrm{a}_{1} \hat{\varepsilon}_{\mathrm{t}-1}^{2}+\mu_{\mathrm{t}}$
12. Predicting the Variance of a Time Series:
$\widehat{\sigma}_{\mathrm{t}+1}^{2}=\hat{\mathrm{a}}_{0}+\hat{\mathrm{a}}_{1} \hat{\varepsilon}_{\mathrm{t}}^{2}$

Problems:

	Heteroskedasticity	Meaning $\sigma_{\text {zi }}$ not constant Conditional Based on ' x ' unconditional random	Effect $b_{\text {I }}$ not affected F-test X $S_{\text {bI }} X$ t-stat- inaccurate	Detection Scatter plot Breush pagan (BP) tes \dagger $n \times R^{2}$	Correction Robust SE/ white corrected SE Generalized least squares
1	Serial correlation	Errors terms are correlated $\rho E i, E j \neq 0$	$\begin{aligned} & \text { S } \mathrm{bIx} \downarrow \text {; } \dagger \text { stat } \uparrow \\ & \text { F-test } x \\ & \text { Type I error } \end{aligned}$	Residual plot \rightarrow the $\mathrm{S}_{\mathrm{bI}} \downarrow$ Type I error \rightarrow-ve SbI $_{\text {I }} \uparrow$ Type II Error DW stat $=2(I-r)$ H_{a} : positively correlated H_{0} : not positively correlated	$\mathrm{CH}+$ serial $=$ Hansen Only serial = Hansen Improve specification of model
1	Multi collinearity	$r \times \mathrm{I}, \mathrm{X}_{2} \neq 0$	$S_{b I} \uparrow x$ b_{1}, b_{2} unaffected \therefore Prob of type II Error \uparrow	If individual coefficients are insignificant but F-test, R^{2} is significant then $X_{I} X_{2}$ correlation \uparrow Multi collinearity	- Omit correlation independent variable - Stepwise regression

Currency Exchange Rates: Understanding Equilibrium Value

1. Mark To Market Value $=\frac{(\text { Forward Price New-F.P locked old) }(\text { Contract Size })}{\left[1+\mathrm{r}\left(\frac{\mathrm{n}}{360}\right)\right]}$

Price currency
2. Covered Interest Rate Parity:
$F_{A / B}=S_{A / B}\left(\frac{1+i+\mathrm{i}}{1+\mathrm{B}}\right)$
$F($ disc $/$ premium $)=S_{A}+\left(\frac{(\mathrm{iA}-\mathrm{iB})\left(\frac{\mathrm{n}}{(360}\right) \rightarrow \text { if LiBOR rates }}{(1+\mathrm{iB}) \mathrm{n} / 360)}\right)$
3. Uncovered Interest Rate Parity:
$E(\% \Delta S)_{(A / B)}=R_{A}-R_{B}$
4. International Fisher Relation:
$R_{\text {nominal } A}-R_{\text {nominal } A}=+E\left(\right.$ Inflation $\left._{A}\right)-E\left(\right.$ Inflation $\left._{B}\right)$
5. Purchasing Power Parity:
$F=S\left(\frac{1+\text { Inflation }_{A}}{1+\text { Inflation }_{B}}\right)$
6. Absolute PPP:
$S(A / B)=\frac{\operatorname{CPI}(A)}{\operatorname{CPI}(B)}$
7. Relative PPP:
$\% \Delta S(A / B)=\operatorname{Inf}_{A}-\operatorname{Inf}_{B}$
8. Real Exchange Rate $\left.=S_{t} \times \frac{\left(1+r_{p}\right.}{\left(1+r_{t}\right.}\right)^{T} C P I$
9. $B O P \Rightarrow$ Current $A / c+$ Capital $A / c+$ Official Reserve $A / c=0$
10. Real exchange rate $A / B=($ Equilibrium Real Exchange Rate $A / B)$
(B affricates) $\uparrow+$ (\uparrow Real Int. rate ${ }_{B}$ - Real Int. rate A)

- (Risk Premium ${ }_{B}$ - \uparrow Risk Premium A)

11. Taylor's Rule: -
$R=r_{n}+\pi+\alpha\left(\pi-\pi^{*}\right)+\beta\left(y-y^{*}\right)$
12. Real Interest Rate $=r_{n}+\pi+\alpha\left(\pi-\pi^{\star}\right)+\beta\left(\gamma-\gamma^{\star}\right)$

Economic Growth

1. $\Delta P=\Delta G D P+\Delta(E / G D P)+\Delta(P / E)$
2. Cobb-Douglas Function:
$y=T K^{a} L^{(1-a)}$
3. Output Per Worker $=Y / L=T(K / L) a$
4. Marginal Product of Capital $=\frac{\Delta \mathrm{Y}}{\Delta \mathrm{K}}=\frac{\alpha \mathrm{Y}}{\mathrm{K}}$
(Constant)
Marginal Productivity $=\frac{\Delta Y / L}{\Delta K / L}, K \uparrow L=$ constant
(Diminishing)
5. MP K $=r$ (Marginal cost of K)-> rental price of capital \downarrow
6. Growth Accounting Relation:
$\Delta Y / Y=\Delta A / A+\alpha(\Delta K / K)+(I-\alpha)(\Delta L / L)$
7. Growth in Potential GDP = i) Long Term Growth of Technology + α (Long Term Growth of K) + (I- α) (Long-Term Growth of L)
ii) Long Term Growth of Labour Force + Long Term Growth in Labour Productivity (Output Per Worker) Both Capitals Depending + Technology Process.
8. Labour Force Participation $=\frac{\text { Labour Force }}{\text { Working Age Population }}$

Where Labour Force $=$ Employed + Unemployed Available to Work.
9. $\quad G^{\star}$ (Growth of Output Per Capita) $=\frac{\theta}{1-\alpha}$
10. $\quad G^{\star}($ Growth of Output $)=\frac{\theta}{1-\alpha}+\Delta L$

Intercorporate Investments

1. Full Goodwill = (Fair Value of Equity of Whole Subsidiary) - (Fair Value of Net Identifiable Assets of The Subsidiary)

- Allowed under both IFRS \& USGAAP

2. Partial goodwill = Purchase Price - (\% owned X FV of Net Identifiable Assets) - Allowed under only IFRS
3. Goodwill Impairment

US GAAP
IFRS

1) $C A>F V$ of reporting unit
2) $C A>R A \Rightarrow$ loss in P / L
3) $C A$ of g / w-implied FV of g / w
\downarrow
FV of unit - net identifiable asset
Years to Repay Debt from CFO $=\frac{\text { Total Debt }}{\text { Operating CF-Reinvestment }}$

Employee Compensation: Post-Employment and Share-Based

1. Pension

Plan Asset Plan Assets

- FV at beginning of year
+ Contributions
+ Actual Return
$\frac{- \text { Benefits paid }}{=\text { FV at end of year }}$

PBO at beginning of year
(+) Current service cost
(+) Interest cost
(+) PSC
(+) Actual Loss/ (-) gain
$=\frac{(-) \text { Benefits }}{=\text { PBO at end of year }}$
2. Plan Asset > PBO - Overfunded Plan
3. Plan Asset < PBO - Underfunded Plan
4. Funded Status $=$ Fair Value of Plan Asset - PBO
5. TPPC = Employer contributions - [Ending Funded status - Beginning Funded status]
= Employer contribution - [(End Plan Asset - End PBO) - (Beginning plan Asset - Beginning PBO)]
= Employer contribution - [(Ending Plan Asset - Beginning Plan Asset) - (Ending PBO - Beginning PBO)]
$=$ Con\# ${ }^{\wedge}-\left[\left(\right.\right.$ eon\# ${ }^{n}+$ Actual Return - Benefi\#) - (Current SC $+\operatorname{lnt}$ cost +PSC \pm Acturial gain/ loss-Benefif) TPPC = Current SC + Int cost + Past SC \pm Actuarial gain / loss - Actual Return

US. GAAP

v. Current Service cost in P/L
vi. Interest cost in P/L

Expected Return in P/L
vii. PSC in OCI
(amortized over remaining life)
viii. Actuarial g / l in $O C I$
(expected return-actual return)
Corridor approach
Amortize amount that is above $10 \% \times$ $\max (A, L)$ over the remaining life

IFRS

i. Current Service cost in P/L
ii. Net Interest income in P / L -income if overfunded ($A>L$)
-expense if underfunded $(A<L)$
iii. PSC in P/L
(recognized immediately)
iv. Actuarial g / l in $O C I$ (expected return actual return)

Not amortized over
6. Expected Return $=$ Expected rate \times Beginning plan Asse \dagger
7. Net Int cost/ income $=$ Disc. Rate \times Beginning funded status (A-L)
8. For IFRS, disc rate \& expected return is same
9. Periodic pension cost in OCI = TPPC - periodic pension cost in P/L Or

Actuarial Gains/ losses +(Actual - expected) return
10. To reclassify:

- Op. income + Full pension exp - current SC
- Add int cost to int exp.
- Add Actual return to other (non -operating) income.

11. Cont ${ }^{n}>$ TPPC $->$ reduction in PBO

Cont ${ }^{\text {n }}$ < TPPC => source of borrowing
From CFO -> (+)
CFF -> (-)

Evaluating Quality of Financial Reports

1. The Beneish Model (M-score):
i. DSRI: $\frac{\text { Days Rec }_{t}}{\text { Days Rect }_{t-1}} \uparrow \times$
ii. GMI: $\frac{\text { Gross Margint }_{t-1}}{\text { Gross }_{\text {Margin }}^{t}} \mathrm{C}$

iv. SGI: $\frac{\text { Sales }_{t}}{\text { Salest }_{t-1}} \uparrow \quad X$
v. DEP: $\frac{\text { Depreciation }_{t-1}}{\text { Depreciation }_{t}} \uparrow X$
vi. SGAI: $\frac{\% \text { SGA } / \text { sale }_{t}}{\% \text { SGA/salest }} \uparrow \uparrow$
vii. Accruals: $\frac{\text { Income Before EOI-CFO }}{\text { Assets }} \uparrow X$
viii. Leverage Index: $\frac{D / A_{t}}{D / A_{t-1}}$ (*higher the better \downarrow) X
2. Gauging Earning Persistence:

$$
\begin{aligned}
& \text { Earnings }_{(t+1)}=\alpha+\beta_{1} \text { earnings }_{t}+\varepsilon \\
& \text { Earnings }_{(t+1)}=\alpha+\beta_{1} \text { cash flow }_{+}+\beta_{2} \text { accruals }_{t}+\varepsilon
\end{aligned}
$$

1. Sources of Earnings and ROE:

DuPont Decomposition -
ROE $=$ NI/EBT $\times E B T / E B I T \times E B I T /$ Revenue \times Revenue/Average Asset \times Average Asset/Average Equity
2. Accruals $B S=N O A$ End $-N O A$ Bgn
3. Accruals Ratio $\mathrm{BS}=\frac{\text { Accruals }^{\mathrm{BS}}}{\left(\mathrm{NOA}_{\text {End }}+\mathrm{NOA}_{\mathrm{Beg}}\right) / 2}$
4. Accruals $C F=N I-C F O-C F I$
5. Accruals ratio $C F=\frac{\text { Accruals }^{C F}}{\left(\text { NOA }_{\text {End }}+\text { NOA }_{\text {Beg }}\right) / 2}$
6. $C G O=E B I T+$ non-cash changes - increase in WC

$$
\underline{\text { IFRS } \quad \underline{U S G A A P}}
$$

Int paid CFO/ CFF CFO
Div. Paid CFO/ CFF CFF

Int/Div Recd. CFO/CFI CFO

- Market Value decomposition

Implied value $=$ Parent's MV - Parents Pro- rate share in associate's MV

Financial Statement Modeling

1. Cost of Goods Sold (COGS):

Forecast COGS $=($ Historical COGS/revenue) \times (Estimate of Future Revenue)
2. Financing Cost:

Net debt = Gross debt - Cash, cash equivalents \&short-term investment.
Net interest expense $=$ Gross Interest Expense - Interest Income (on cash \& short- term debt securities)
3. Gross (net) interest expense rate $=$ gross (net) expense/ gross (net) debt
4. Yield on average cash $=$ interest income / cash + ST securities.
5. Effective tax rate $=\frac{\text { Income tax expense }}{\text { PBT }}$

Cash tax rate $=\frac{\text { Cash taxes paid }}{\text { PBT }}$
6. Projected Accounts Receivables $=$ Days Sales Outstanding $\times\left(\frac{\text { Forecasted Sales }}{365}\right)$
7. ROC $=\frac{\text { Net Operating Profit }}{\mathrm{D}+\mathrm{E}} \rightarrow$ Not adjusted for taxes

ROIC $=\frac{\text { NOPLAT }}{D+E} \rightarrow$ Net operating profit - taxes
ROE $=\frac{\mathrm{NI}}{\mathrm{E}} \rightarrow$ Not suitable for comparing companies with different capital structures
8. Cannibalization rate $=\frac{\text { new product sales that replace existing product sales }}{\text { total new product sales }}$

Corporate Issuers

Analysis of Dividends and Share Repurchases

1. Effective tax rate $=$ corporate tax rate $+(1$ - corporate tax rate) (individual tax rate)
2. Expected increase in dividends $=$ [(expected earnings \times target payout ratio) - previous dividend] adjustment factor
3. FCFE coverage ratio $=$ FCFE / (dividends + share repurchases)
4. Grinold-Kroner model: ERP $=[D Y+\Delta P / E+i+G-\Delta S]-r_{f}$
5. Cost of equity based on DDM: Cost of equity $\left(r_{e}\right)$ = dividend yield (DY) + capital gains yield (CGY)
6. Fama-French model: Required return of stock $=r_{f}+\beta_{1} E R P+\beta_{2} S M B+\beta_{3} H M L$
7. Five-factor Fama-French extended model: Required return of stock $=r_{f}+\beta_{1} E R P+\beta_{2} S M B+$ $\beta_{3} H M L+\beta_{4} R M W+\beta_{5} C M A$
8. Expanded CAPM for private companies: Required return $=r_{f}+\beta_{\text {peer }} \times E R P+S P+I P+S C R P$
9. Build-up approach: Required return $=r_{f}+E R P+S P+S C R P$
10. Premium Paid Analysis: Premium $=(D P-U P) / U P$

$$
=(\text { deal price - unaffected price) / unaffected price }
$$

11. Gross profit margin $=\frac{\text { gross profit }}{\text { net sales }}$
12. Operating profit margin $=\frac{\text { operating profit }}{\text { net sales }}=\frac{\text { EBIT }}{\text { net sales }}$
13. Net profit margin $=\frac{\text { net income }}{\text { net sales }}$
14. \quad Return on assets $=\frac{\text { net income }}{\text { average total assets }}$
15. Return on total capital $=\frac{E B I T}{\text { (interest bearing debt }+ \text { shareholders' equity) }}$
16. Return on total equity $=\frac{\text { net income }}{\text { average total equity }}$
17. Financial leverage ratio $=\frac{\text { total assets }}{\text { total equity }}$
18. Long-term debt-to-equity ratio $=\frac{\text { total long-term debt }}{\text { total equity }}$
19. Debt-to-equity ratio $=\frac{\text { total debt }}{\text { total equity }}$

Equity

Equity Valuation: Application \& Processes

1. \quad IV analyst - price $=(I V$ actual - price $)+\left(I V_{\text {analyst }}-I V_{\text {actual }}\right)$
2. Conglomerate Discount = Sum of individual parts - Sum as a whole

Discounted Dividend Valuation

DDM Model:

1. One Period -
$P_{0}=\frac{D_{1}+P_{1}}{1+R_{e}}$
2. Two period -

$$
P_{0}=\frac{D_{1}}{1+R_{e}}+\frac{D_{2}+P_{2}}{\left(1+R_{e}\right)^{2}}
$$

3. Multi period -

$$
P_{0}=\frac{D_{1}}{1+R_{e}}+\frac{D_{2}}{\left(1+R_{e}\right)^{2}}+\ldots .+\frac{D_{n}+P_{n}}{\left(1+R_{e}\right)^{n}}
$$

4. Gordon Growth Model:
$P_{0}=\frac{D_{1}}{R_{e}-g}$
5. Present value of growth opportunities (PVGO):
$P_{0}=\frac{\mathrm{E}_{1}}{\mathrm{R}_{e}}+$ PVGO
6. Justified trailing P/E:

$$
\frac{\mathrm{P}_{0}}{\mathrm{E}_{0}}=\frac{(\mathrm{I}+\mathrm{g})(\mathrm{I}-\mathrm{b})}{\mathrm{R}_{e}-\mathrm{g}}
$$

Justified leading P/E:
$\frac{\mathrm{P}_{0}}{\mathrm{E}_{1}}=\frac{(\mathrm{I}-\mathrm{b})}{\mathrm{R}_{\mathrm{e}}-\mathrm{g}}$
7. Value of perpetual preferred shares $=\frac{D_{p}}{r_{p}}$
8. Valuation using H - Model

$$
\mathrm{V}_{0}=\frac{\mathrm{D}_{0}\left(1+\mathrm{g}_{\mathrm{L}}\right)}{\mathrm{R}_{e}-\mathrm{g}_{\mathrm{L}}}+\frac{\mathrm{D}_{0} \times \mathrm{t} / 2 \times\left(\mathrm{gs}^{-}-\mathrm{g}_{\mathrm{L}}\right)}{\mathrm{R}_{e}-\mathrm{g}_{\mathrm{L}}}
$$

9. Sustainable growth rate:
$S G R(g)=b \times R O E$
Where, ROE $=\frac{\mathrm{NI}}{\text { Stockholders' Equity }}=\frac{\mathrm{NP}(\mathrm{NI})}{\text { sales }} \times \frac{\text { Sales }}{\text { Total Assets }} \times \frac{\text { Total Assets }}{\text { Stockholders' Equity }}$
$\therefore g=\left(\frac{\text { Net Income-Dividends }}{\text { Net Income }}\right) \times \frac{\text { Net Income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Total Asset }} \times \frac{\text { Total Assets }}{\text { Stockholders' Equity }}$
10. Intrinsic value > market value \rightarrow undervalued
11. Intrinsic value $=$ market value \rightarrow fairly valued
12. Intrinsic value < market value \rightarrow overvalued

Free Cash Flow Valuation

1. FCFF-4 Approaches:
i. FCFF $=$ NI + NCC + Interest ($1-$ TAX) - fC Investment - WC Investment
ii. $\quad \mathrm{FCFF}=\mathrm{NI}+\mathrm{NCC}-\mathrm{WC}$ Investment + Interest $(1-\mathrm{TAX})-\mathrm{fC}$ investment
= CFO + Interest (1-TAX) - FC Investment
iii. $\quad F C F F=E B I T(1-T A X)+$ Depreciation $-f C$ investment $-W C$ investment
iv. \quad FCFF $=$ EBITDA ($1-$ TAX) + (Depreciation $X T A X)-f C$ investment - WC investment
2. FCFE-4 Approaches:

FCFE = FCFF - Interest ($1-$ TAX) + NET Borrowings
FCFE = NI + NCC - WC Investment - FC Investment + Net Borrowings
FCFE = CFO - FC Investment + Net Borrowings
FCFE $=$ NI - (1- DR) [(FC Investment - Depreciation) + WC Investment]
$\therefore 1-D R=1-\frac{D}{A}=\frac{A-D}{A}=\frac{E}{A}$
3. Single Stage FCFF / FCFE Model:

FCFF: Value of Firm $=\frac{\mathrm{FCFF}_{1}}{\mathrm{WACC}-\mathrm{g}}=\frac{\mathrm{FCFF}_{0} \times(1+g)}{\mathrm{WACC}-\mathrm{g}}$
FCFE: Value of Equity $=\frac{\mathrm{FCFE}_{1}}{r-\mathrm{g}}=\frac{\mathrm{FCFE}_{0} \times(1+g)}{\mathrm{r}-\mathrm{g}}$
4. Terminal Value in year $n=($ trailing $P / E) \times$ (earnings in years n)
5. Terminal Value in year $n=($ leading $P / E) \times($ forecasted earnings in year $n+1)=\frac{\mathrm{p}}{\mathrm{E}_{1}} \times E_{o}(1+g)$

Market-Based Valuation: Price and Enterprise Value Multiples

1. Trailing $P / E=\frac{\text { Market price per share }}{E P S \text { over previous } 12 \text { months }}$
2. Leading $P / E=\frac{\text { Market price per share }}{\text { Forecasted EPS over next } 12 \text { months }}$
3. P / B Ratio $=\frac{\text { Market price of Equity }}{\text { Book value of Equity }}$
4. P / S Ratio $=\frac{\text { Market value of Equity }}{\text { Total Sales }}$
5. Dividend Yield: D/P
6. Trailing $D / P=D_{0} / P_{0}$
7. Leading $D / P=D_{I} / P_{0}$
8. Justified P/E Multiple:
$P_{o}=\frac{D_{1}}{R_{e}-g}$
Justified trailing $P / E=\frac{P_{0}}{E_{0}}=\frac{(1-b)(1+g)}{r-g}$
Leading $P / E=\frac{P_{0}}{E_{1}}=\frac{1-b}{r-g}$
9. Justified P/B Multiple:

Justified P/B Ratio $=\frac{\text { RoE-g }}{\mathrm{r}-\mathrm{g}}$
10. Justified P / S Multiple:

Justified $\frac{\mathrm{P}_{0}}{\mathrm{~S}_{0}}=\frac{\left(\frac{\mathrm{E}_{0}}{\mathrm{~S}_{0}}\right) \times(1-\mathrm{b})(1+\mathrm{g})}{\mathrm{r}-\mathrm{g}}$
11. Justified P/CF Multiple:
$V_{0}=\frac{\mathrm{FCFE}_{0}(1+\mathrm{g})}{\mathrm{r}-\mathrm{g}}$
12. Justified Dividend Yield:
$\frac{\mathrm{D}_{0}}{\mathrm{P}_{0}}=\frac{\mathrm{r}-\mathrm{g}}{1+\mathrm{g}}$
13. FED \& YARDENI Model:

Fed model:
$(E / P)_{S \& P}>(E / P)_{10 \text { yr } T \text {-Bond }} \therefore$ undervalued
$(E / P)_{\text {S\&P }}<(E / P)_{10 \text { yr } T \text {-Bond }} \therefore$ overvalued
Yardeni model:
Earnings yield of market (E/P) = yield on ' A ' rated bond $-k \times$ (Long term growth rate)
14. PEG RATIO:

Peg ratio $=\frac{\mathrm{P} / \mathrm{E} \text { ratio }}{\mathrm{g}}$
$C F=$ Net Income + depreciation + amortization
FCFE = CFO - FC Inv + Net borrowing
$P / C F=\frac{\text { MV of equity }}{\text { CF }}=\frac{\text { Market price per share }}{\text { CF Per Share }}$
EV/EBITDA ratio $=\frac{\text { enterprise value }}{\text { EBITDA }}$
15. Momentum indicator:
i. Earnings Surprise = Reported EPS - Expected EPS
ii. Standardized Unexpected Earnings (SUE) $=\frac{\text { earnings surprise }}{\text { SD of earnings surprise }}$
16. Weighted Harmonic Mean $=\frac{1}{\sum_{i=1}^{n}=\frac{w_{i}}{X_{i}}}$

Residual Income Valuation

1. $R I=$ Net Income - Cost of Equity X Equity Capital (equity charge)
$=(R O E-r) B V_{\text {equity }}(t-I) \quad$ where $B V=$ beginning $B V$
2. $E V A=$ NOPAT $-(W A C C \times$ TOTAL CAPITAL $) \rightarrow$ Beginning invested capital $(D+E)$
$=[E B I T-(1-t a x)]-$ WACC
3. $M V A=$ Market Value - Total Capital
4. $R I_{+}=E_{+}-\left(r \times B_{t-1}\right)=(R O E-r) \times B_{t-1}$
5. Intrinsic Value:
$\mathrm{P}_{0}=\mathrm{B}_{0}+\left\{\frac{R I_{1}}{(1+r)^{1}}+\frac{R I_{2}}{(1+r)^{2}}+\frac{R I_{3}}{(1+r)^{3}}+\cdots\right\}$
6. Single - stage Residual Model:
$\mathrm{P}_{0}=\mathrm{B}_{0}+\left[\frac{(\mathrm{ROE}-\mathrm{r}) \times \mathrm{B}_{0}}{\mathrm{r}-\mathrm{g}}\right]$
7. The growth rate implied by the market price in a single - stage residual income:
$g=r-\left[\frac{\mathrm{B}_{0} \times(\mathrm{ROE}-\mathrm{r})}{\mathrm{P}_{0}-\mathrm{B}_{0}}\right]$
8. Tobin's $Q=\frac{\text { market value of debt }+ \text { market value of equity }}{\text { replacement cost of total asset }}$
9. $P_{0}=B_{0}+(P V$ of interim high-growth $R I)+(P V$ of continuing residual income $)$
10. PV of Continuing Residual Income in year $\mathrm{T}-1=\frac{\mathrm{RI}_{\mathrm{T}}}{1+\mathrm{r}-\omega}$

Private Company Valuation

1. $\mathrm{V}_{\mathrm{F}}=\frac{\mathrm{FCFF}_{1}}{\mathrm{WACC}-\mathrm{g}}$
2. $\mathrm{V}_{\mathrm{E}}=\frac{\mathrm{FCFE}_{1}}{\mathrm{~K}_{\mathrm{e}}-\mathrm{g}}$
3. Control premium = pro rata value of controlling interest -pro-rata value of non-controlling interest
4. Adjusted control premium (applicable for MVIC multiple) $=$ (control premium on equity) $\times(1-D R)[D R$ = Debt to asset ratio]
5. \quad DLOC $=1-[1 /(1+$ control premium $)$
6. Total discount for lack of marketability $=1-[(1-$ DLOC $)(1-$ DLOM $)]$

Fixed Income

The Term Structure \& Interest Rate Dynamics

1. The Relationship Between the Discount Factor P_{T} and the Spot Rate S_{T} :
$\mathrm{P}_{\mathrm{T}}=\frac{1}{\left(1+\mathrm{S}_{\mathrm{T}}\right)^{\mathrm{T}}}$
2. Forward Rates:
$\mathrm{F}_{(\mathrm{j}, \mathrm{k})}=\frac{1}{[1+\mathrm{f}(\mathrm{j}, \mathrm{k})]^{\mathrm{k}}}$
3. The Forward Pricing Model:
$F_{(j, k)}=\frac{P_{(j+k)}}{P_{j}}$
4. The Forward Rate Model:
$\left[1+\mathrm{S}_{(\mathrm{j}+\mathrm{k})}\right]^{(\mathrm{j}+\mathrm{k})}=\left(1+\mathrm{S}_{\mathrm{j}}\right)^{\mathrm{j}}[1+\mathrm{f}(\mathrm{j}, \mathrm{k})]^{\mathrm{k}}$
5. Swap Rate $=\frac{1-\mathrm{d}_{\mathrm{L}}}{\sum \mathrm{d}_{\mathrm{L}}}$
6. Swap Spread ${ }_{+}$: $=$Swap Rates ${ }_{+}$- Treasury yield ${ }_{+}$(Same Maturity)
7. I spread = Riskiness of Corporate Bond Over Banks \downarrow
comp ${ }^{n}$ credit liquidity risk $=$ corp Bond - swap rate
8. TED Spread $=$ (3months LIBOR Rate) - (3months T-bill Rate)
9. LIBOR-O/S Spread = $\uparrow=$ banks unwilling to lend; $\downarrow=$ liquidity

Includes credit risk minimal credit risk measure of money market securities risk
10. Cox - Ingersoll Ross Model (CIR):
$d r=[\mathrm{a}(\mathrm{b}-\mathrm{r}) \mathrm{dt}+(\sigma \sqrt{r} . d z)]$
11. Vasicek Model:
$d r=[(a(b-r) d t+(\sigma d z)]$
12. Ho-Lee Model:
$d r_{+}=\theta_{+} d t+\sigma d z_{\dagger}$
13. Sensitivity to Parallel, Steepness, and Curvature Movements:
$\frac{\Delta P}{P}=D_{L} \Delta x_{L}-D_{S} \Delta x_{S}-D_{C} \Delta x_{C}$

1. Value of option embedded in a bond:
$V_{\text {call }}=V_{\text {straight }}$ bond $-V_{\text {callable }}$ bond
$V_{\text {Put }}=V_{\text {Putable }}$ bond $-V_{\text {straight }}$ bond.
2. $O A S=Z-C a l l$ Risk
3. $O A S=Z+$ Put Risk
4. Effective Duration $=\frac{P_{2}-P_{1}}{2 P_{0} \Delta y}$
5. Effective Convexity $=\frac{P_{2}+P_{1}-2 P_{0}}{P_{0}(\Delta y)^{2}}$
6. Market Conversion Premium Ratio $=\frac{\text { Conversion Premium } \times \text { Market Per Share }}{\text { Market Price of Convertible Stock }}$
7. Conversion Value $=$ Market Price of Stock \times Conversion Ratio
8. Market Conversion Price $=\frac{\text { Market Price of Convertible bond }}{\text { Convertion Ratio }}$
9. Market Conversion Premium Per Share $=$ Market Conversion Price - Stock's Market Price.
10. Premium Over Straight Value $=\frac{\text { Market Price of Convertible Bond }}{\text { Straight Value }}-1$
11. Put-Call Parity:
$C-P=P V$ (Forward price of the bond on exercise date) - PV (Exercise price)

Credit Analysis Models

1. Present Value of Expected Losses $=$ Expected Loss + Risk Premium - Time Value Discount
2. Value of $S_{\text {tock }}^{T}=\operatorname{Max}\left(0, A_{T}-K\right)$
3. Value of $\operatorname{Debt}_{T}=\operatorname{Min}\left(A_{T}, K\right)$
4. Probability of Default $=I-N\left(e_{2}\right)$
$e_{1}=\frac{\ln \left(\frac{\mathrm{At}}{\mathrm{K}}\right)+\mu(\mathrm{T}-\mathrm{t})+1 / 2 \sigma^{2}(\mathrm{~T}-\mathrm{t})}{\sigma \sqrt{\mathrm{T}-\mathrm{t}}}$
Where $\mu=$ Annual rate of return on company's assets.
$e_{2}=e_{1}-\sigma \sqrt{T-t}$
5. Key rate duration total duration \rightarrow same effect if parallel shift
6. Duration exposure = Add the duration
7. Effective Duration $=\frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{2 \mathrm{P}_{0} \Delta \mathrm{y}}$
8. Effective Convexity $=\frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{\mathrm{P}_{0}(\Delta y)^{2}}$
9. $\% \Delta$ Bond Price $=-\Delta \mathrm{y} \times \mathrm{ED}=\frac{1}{2} \times \mathrm{EC} \times(\Delta \mathrm{y})^{2}$
10. $V C B=V N C B-C a l l$ Price
11. $\quad \mathrm{VPB}=\mathrm{VN} \mathrm{PB}+$ Put Price

Credit Default Swaps

1. Pay-out Amount = pay-out Ratio $\times N P$
2. Pay-out Ratio $=I-($ Recovery Rate $) \%$
3. Hazard rate/ conditional Prob. Of default = Prob. (PD/Default has not occurred)
4. Expected Loss $=$ Hazard Rate \times LGD (\% terms)
5. Upfront payment $=P V$ (protection leg) $-P V$ (premium leg)
\downarrow
\downarrow
Based on CDS spread Based on coupon rate
6. Upfront Premium $=(C D S$ spread $-C D S$ coupon $) \times$ duration of spread
7. Price of $C D S=100$ - Upfront Premium (\%)
8. Valuation After Inception of CDS:

Profit for protection buyer $\approx(\Delta$ spread \times duration $) \times$ Notional Principal Or, Profit for protection buyer (\%) \approx change in spread (\%) \times duration

Derivatives

Pricing and Valuation of Forward Commitments

1. Forward Price $=$ Price That Prevents Profitable Riskless Arbitrage in Frictionless Markets
2. The Forward Contract Price:
$\mathrm{FP}=\mathrm{So}_{\mathrm{o}} \times\left(\mathrm{I}+\mathrm{R}_{\mathrm{f}}\right)^{\dagger}$
3. Forward Contracts with Discrete Dividends:

FP (on An Equity Security) $=(S 0-P V D) \times(1+R f) T$
FP (on an Equity Security) $=\left[\mathrm{S}_{0} \times\left(1+\mathrm{R}_{\mathrm{f}}\right)^{\mathrm{T}}\right]-\mathrm{FVD}$
4. Value of the Long Position in A Forward Contract on A Dividend Paying Stock:
$V_{+}($long position $)=\left(S_{t}-P V D_{+}\right)-\left[\frac{F P}{\left(I+R_{f}\right)^{T-t}}\right]$
5. Equity Forward Contracts with A Continuous Dividends:

FP (on An Equity Index) $=\mathrm{S}_{0} \times \mathrm{e}^{\left(\mathrm{R}_{\mathrm{f}}^{\mathrm{c}}-\delta^{\mathrm{c}}\right) \times \mathrm{T}}=\left(\mathrm{S}_{0} \times \mathrm{e}^{\delta^{\mathrm{c}} \times \mathrm{T}}\right) \times \mathrm{e}^{\mathrm{R}_{\mathrm{f}}^{\mathrm{c}} \times \mathrm{T}}$
$F=\frac{\text { Spot } \times e^{\text {interest } \times t}}{e^{\text {Dividends } \times t}}$
6. Forward Price on A Coupon Paying Bond:

FP (on A Fixed Income Security) $=\left(S_{0}-P V C\right) \times\left(1+R_{f}\right)^{\top}=S_{0}\left(1+R_{f}\right)^{\top}-F V C$
7. $\quad V_{+}($Long Position $)=\left(S_{+}-P V C_{+}\right)-\left[\frac{F P}{\left(I+R_{f}\right)^{T-t}}\right]$

Accrued Interest $=\frac{\text { Days Since Last Coupon }}{\text { Days Between Coupon Payment }} \times$ Coupon Amount
8. $\mathrm{FP}=\left[(\right.$ Full price $\left.)\left(1+\mathrm{R}_{\mathrm{f}}^{\mathrm{W}}\right)^{\mathrm{T}}-\mathrm{AI}_{\mathrm{T}}-\mathrm{FVC}\right]$
9. $Q F P=F P / C F=\left[(\right.$ Full Price $\left.)\left(1+\mathrm{R}_{\mathrm{f}}\right)^{\mathrm{T}}-\mathrm{AI}_{\mathrm{T}}-\mathrm{FVC}\right]\left(\frac{1}{\mathrm{CF}}\right)$
10. Covered Interest Rate Parity:

FT (Currency Forward Contract) $=\mathrm{SO} \times \frac{\left(1+\mathrm{R}_{\mathrm{PC}}\right)^{\mathrm{T}}}{\left(1+\mathrm{R}_{\mathrm{BC}}\right)^{\mathrm{T}}}$
11. Valuing Currency Forward Contracts After Initiation:
$V_{t}=\frac{\left[\mathrm{FP}_{\mathrm{t}}-\mathrm{FP}\right] \times(\text { contract size })}{\left(1+\mathrm{r}_{\mathrm{PC}}\right)^{(\mathrm{T}-\mathrm{t})}}=\left[\frac{\mathrm{S}_{\mathrm{t}}}{\left(1+\mathrm{R}_{\mathrm{BC}}\right)^{\mathrm{T}-\mathrm{t}}}\right]-\left[\frac{\mathrm{F}_{\mathrm{T}}}{\left(1+\mathrm{R}_{\mathrm{PC}}\right)^{\mathrm{T}-\mathrm{t}}}\right]$
12. Value of Futures Contract = Current Futures Price - Previous Mark to Market Price.
13. Discount factors (zs):
$Z=\frac{1}{\left[1+\left(\operatorname{LIBOR} \times \frac{\text { days }}{360}\right)\right]}$
14. $\operatorname{SFR}($ Periodic $)=\frac{1-\text { last discount factor }}{\text { sum of discount factors }}$
15. Market Value of An Interest Rate Swap:

Value to The Payer $=\Sigma Z \times\left(\right.$ SFR $_{\text {New }}-$ SFR $\left._{\text {old }}\right) \times \frac{\text { days }}{360} \times$ Notional Principal
16. Equity Swaps:

SFR (Periodic) $=\frac{1-\text { Last Discount Factor }}{\text { Sum of Discount Factors }}$

Valuation of Contingent Claims

1. Put-Call Parity:
$\mathrm{C}_{0}+\frac{\mathrm{X}}{\left(1+\mathrm{R}_{\mathrm{F}}\right)^{\mathrm{T}}}=\mathrm{P}_{0}+\mathrm{S}_{D}$
$H=\frac{\mathrm{C}^{+}-\mathrm{C}^{-}}{\mathrm{S}^{+}-\mathrm{S}^{-}}$
2. Black - Scholes Model:

Co $=$ S0 N (d1) $-\mathrm{e}^{-\mathrm{rt}} \mathrm{XN}\left(\mathrm{d}_{2}\right)$
$\mathrm{Po}=\mathrm{e}^{\mathrm{rt}} \mathrm{XN}\left(-\mathrm{d}_{2}\right)-\mathrm{S} 0 \mathrm{~N}(-\mathrm{d} 1)$
Where:
$\mathrm{d} 1=\frac{\ln \left[\frac{\mathrm{S}}{\mathrm{X}}\right]+\left(\mathrm{r}+\frac{\sigma^{2}}{\mathrm{~T}}\right) \mathrm{T}}{\sigma \sqrt{\mathrm{T}}}$
$\mathrm{d} 2=\mathrm{d} 1-\sigma \sqrt{\mathrm{T}}$
3. Options on Dividend Paying Stocks:
$\mathrm{Co}=\mathrm{S} 0 \mathrm{e}^{-\delta \mathrm{T}} \mathrm{N}(\mathrm{d} 1)-\mathrm{e}^{-\mathrm{rt}} \mathrm{N}\left(\mathrm{d}_{2}\right)$
$\mathrm{P} 0=\mathrm{e}^{-\mathrm{rt}} \mathrm{N}\left(-\mathrm{d}_{2}\right)-\mathrm{S} 0 \mathrm{e}^{-\delta \mathrm{T}} \mathrm{N}(-\mathrm{d} 1)$
Where $\delta=$ Continuously Compounded Dividend Yield
$\mathrm{d} 1=\frac{\ln \left(\frac{\mathrm{S}}{\mathrm{x}}\right)+\left(\mathrm{r}-\delta+\frac{\sigma^{2}}{2}\right) \mathrm{T}}{\sigma \sqrt{\mathrm{T}}}$
$\mathrm{d} 2=d_{1}-\sigma \sqrt{t}$
4. Options on Currencies:
$\mathrm{Co}=\mathrm{S} 0 \mathrm{e}^{-\mathrm{rBT}} \mathrm{N}(\mathrm{d} 1)-\mathrm{e}^{-\mathrm{rPT}} \mathrm{N}\left(\mathrm{d}_{2}\right)$
$\mathrm{P} 0=\mathrm{e}^{-\mathrm{rPT}} \mathrm{N}\left(-\mathrm{d}_{2}\right)-\mathrm{S}_{0} \mathrm{e}^{-\mathrm{rBT}} \mathrm{N}\left(-\mathrm{d}_{1}\right)$
5. The Black Model: -
$\mathrm{Co}=\frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{e}^{\mathrm{rt}}} \mathrm{N}\left(\mathrm{d}_{1}\right)-\frac{\mathrm{X}}{\mathrm{e}^{\mathrm{rt}}} \mathrm{N}\left(\mathrm{d}_{2}\right)$
Where, $\mathrm{d} 1=\frac{\ln \left(\frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{x}}\right)+\left(\frac{\sigma^{2}}{2}\right) \mathrm{t}}{\sigma \sqrt{\mathrm{t}}}$
$\mathrm{d} 2=d_{1}-\sigma \sqrt{t}$
6. Interest Rate Options:
$\mathrm{Co}=\frac{\mathrm{AP}}{\mathrm{e}^{\mathrm{r}\left(\mathrm{N} \times \frac{30}{360}\right)}}\left[\mathrm{FRA}\left(\mathrm{M}^{*} \mathrm{~N}\right) \mathrm{N}(\mathrm{d} 1)-\mathrm{XN}(\mathrm{d} 2)\right] \mathrm{X} N \mathrm{~N}$
Where: AP $=$ Accrual Period $=\frac{\text { Actual }}{365}=\left[\frac{(\mathrm{N}-\mathrm{M}) \times 30}{360}\right]$
NP $=$ Notional Principal on the FRA.
7. Swaptions:
$V_{\text {payer swaption }}=P V A\left[S F R . N\left(d_{1}\right)-X N\left(d_{2}\right)\right] \times N P \times A P$
8. $\Delta C=$ Call Delta $\times \Delta s+\frac{1}{2}$ Gamma $\times \Delta s 2$
9. $\Delta \mathrm{P}=$ Put Delta $\times \Delta s+\frac{1}{2}$ Gamma $\times \Delta s^{2}$

Alternative Investments

Real Estate Investment

1. Income Approach

Net Operating Income:

Rental income (if fully occupied)

+ other income
=Potential gross income
- vacancy and collection loss
=Effective gross income
- Operating expense
=Net operating income
The Capitalization Rate:

1. \quad Cap Rate $=\frac{\text { NOI }_{I}}{\text { Value }}$
or, Value $=V_{\mathrm{O}}=\frac{\text { NOI }}{\text { Cap.Rate }}$
or, Cap Rate $=\frac{\text { NOI }}{\text { Comparable Sales Price }}$
$\mathrm{P}_{\mathrm{O}}=\frac{\mathrm{D}_{1}}{\mathrm{Re}-\mathrm{g}}$
or, $\mathrm{P}_{\mathrm{O}}=\frac{\text { NOI }}{\text { Cap.Rate }}$
or, Cap Rate $=\frac{\mathrm{NOI}}{\mathrm{P}_{\mathbf{0}}}$
\downarrow
Value of property today
2. Value $=\frac{\text { Rent }}{\text { ARY }}$

$$
\text { or, } A R Y=\frac{\text { Rent }}{\text { Comparable Sale } P_{x}}
$$

3. Gross Income Multiplier $=\frac{\text { Sales Price }}{\text { Gross Income }}$
4. \quad Value $=$ Gross Income \times Gross Income Multiplier

Discounted Cash Flow Method:

1. \quad Cap Rate $=$ Discounted Rate - Growth Rate $=R_{e}-g$
2. Discounted Rate $=$ Cap Rate + Growth Rate
3. Value $=\mathrm{V}_{\mathrm{O}}=\frac{\mathrm{NOI}}{(\mathrm{r}-\mathrm{g})}=\frac{\mathrm{NOI}}{\text { Cap Rate }}$
4. COST APPROACH
$V_{\text {property }}=($ Replacement cost - Cost of fixing curable items) - Depreciation - Incurable expense capitalised + Market value of land
Where Depreciation $=\frac{\text { Effective Age }}{\text { Economic Life }} \times[$ Replacement Cost - Curable Items]
5. Appraisal-Based indices:
a) Return $=\frac{\text { NOI }- \text { Capital Expenditure }+ \text { End Market Value }- \text { Beginning Market Value }}{\text { Beginning Market Value }}$
6. Ratios to consider for evaluation
a) Debt Service Coverage Ratio. $=\frac{\text { First year NOI }}{\text { Debt Service }}$ [higher the better]
b) Loan-to - Value Ratio $=\frac{\text { Loan Amt }}{\text { Appraisal Value }}$ [lower the better]
c) Equity Dividend Rate $=\frac{\text { First year CF }}{\text { Equity }}$
7. Valuation After Renovation $=\frac{\text { Stabilised NOI }}{\text { Cap.Rate }}$
8. Valuation After Renovation - PV of loss = Total Value
9. Total Return $=$ Collateral Return $(H P Y$ on T-bill $)+\operatorname{Price} \operatorname{Return}\left(\frac{\mathrm{P}_{\mathrm{I}}-\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{o}}}\right)+$ Roll Return
10. \quad Price Return $=\frac{\text { Current Price-Previous Price }}{\text { Previous Price }}$
11. Roll Return $=\frac{\text { Price of Expiring Futures Contract - Price of New Futures Contract }}{\text { Price of Expiring Futures Contract }}$

12. Standardized P/E Sensitivity:
$b_{i 1}=\frac{\left(\frac{\mathrm{P}}{\mathrm{E}}\right) \mathrm{i}-\overline{\mathrm{P} / \mathrm{E}}}{\sigma \mathrm{P} / \mathrm{E}}$
13. Active Return $=\left(R_{p}\right)-\left(R_{B}\right)$

Active Risk $=\sigma_{\left(R_{P}-R_{B}\right)}$
3. $\quad I R=\frac{\bar{R}_{P}-\bar{R}_{B}}{\sigma_{\left(R_{P}-R_{B}\right)}}$
4. Return Attribution: Active Return = Factor Return + Security Selection Return
5. Factor Return=
$\sum_{i=1}^{k}\left(\beta_{\mathrm{Pi}}-\beta_{\mathrm{bi}}\right) \times \lambda_{\mathrm{i}}$
6. Active Specific Risk =
$\sum_{i=1}^{n}\left(W_{P i}-W_{b i}\right)^{2} \times \sigma_{\varepsilon i^{2}}$
7. Carhart Model-
$E(R)=R_{F}+\beta_{1} R M R F+\beta_{2} S M B+\beta_{3} H M L+\beta_{4} W M L$

Measuring and Managing Market Risk

1. $\sigma_{\text {Portfolio }}^{2}=W_{A}^{2} \sigma_{A}^{2}+W_{B}^{2} \sigma_{B}^{2}+2 W_{A} W_{B} \operatorname{Cov}_{A B}$
2. $E(R i)=R f+\operatorname{Betai}[E(R M K T)-R f]$
3. Change in Price $=-$ Duration $(\Delta Y)+\frac{1}{2}$ Convexity $(\Delta Y) 2$
4. Change in Call Price $=\operatorname{delta}(\Delta S)+\frac{1}{2}$ gamma $(\Delta S) 2+$ vega (ΔV)
5. Discount Rate $=R+\pi+\theta+\gamma+K+\emptyset$
6. Inter - temporal Rate of Substitution $=\frac{\mathrm{U}_{\mathrm{t}}}{\mathrm{U}_{\mathrm{o}}}=\frac{\text { Future }}{\text { Current }}$
7. $P O=E(m t)$
8. Real Risk-free rate of Return:
$R=\frac{1-P_{0}}{P_{0}}=\left(\frac{I}{E\left(m_{t}\right)}\right)-1$
9. $\quad P_{0}=\frac{E\left(P_{1}\right)}{I+R}+\operatorname{cov}\left(P_{1}, M_{1}\right)$
P_{0} is lower; Return \uparrow (Since Risk Taken)
$\frac{E\left(P_{1}\right)}{I+R}$ When no risk $=P_{0}$
10. Disc. Rate $=R+\pi$ (short term)
$R+\pi+\theta$ (long-term)
11. Taylor Rule: $r=R n+\pi+0.5\left(\pi-\pi^{*}\right)+0.5\left(y-y^{*}\right)$
12. BEI = Yield on Non-Inflation Indexed Bond - Yield on Non-Inflation Indexed Bond
13. BEI $=\pi+\theta$
14. Active Return $E\left(R_{A}\right)=E\left(R_{P}\right)-E\left(R_{B}\right)$
15. For an Active Portfolio of N Securities:
$E\left(R_{A}\right)=\sum \Delta w_{i} E\left(R_{i}\right)$
16. Weighted Average of Securities Returns:
$E\left(R_{P}\right)=\sum w_{P, i} E\left(R_{P, j}\right)$ and $E\left(R_{B}\right)=\sum w_{B, i} E\left(R_{B, j}\right)$
17. Ex-ante Active Return:
$E\left(R_{A}\right)=\sum w_{P, i} E\left(R_{P, j}\right)-\sum w_{B, i} E\left(R_{B, j}\right)$
18. Security Selection Return:
$E\left(R_{A}\right)=\sum \Delta w_{i} E\left(R_{B, j}\right)+\sum w_{P, i} E\left(R_{A, j}\right)$
19. \quad Sharpe Ratio $=\frac{\mathrm{R}_{\mathrm{P}}-\mathrm{R}_{\mathrm{F}}}{\sigma_{\mathrm{p}}}$
20. $\quad I R=\frac{R_{P}-R_{B}}{\sigma_{\left(R_{P}-R_{B}\right)}}$
21. With Optimal Level of Active Risk:
$\mathrm{SR}_{\mathrm{P}}=\sqrt{\mathrm{SR}_{\mathrm{B}}^{2}+\mathrm{IR}^{2}}$
Total Risk of The Portfolio: $\sigma_{P}^{2}=\sigma_{B}^{2}+\sigma_{A}^{2}$
22. Unconstrained:
$I R^{*}=I C \times \sqrt{B R}$
$E\left(R_{A}\right)^{\star}=I C \sqrt{B R} \sigma_{A}$
23. Constrained:

IR $=I C \times \sqrt{B R} \times T C$
$\mathrm{E}\left(\mathrm{R}_{\mathrm{A}}\right)=\mathrm{IC} \times \sqrt{\mathrm{BR}} \times \mathrm{TC} \times \sigma_{\mathrm{A}}$
$S_{p c}=\sqrt{\mathrm{SR}_{\beta}^{2}+\left(\mathrm{IR}^{2} \times \mathrm{TC}\right)}$
11. $\sigma_{\mathrm{CA}}=\frac{\mathrm{T}_{\mathrm{C}} \cdot \mathrm{IR}}{\mathrm{SR}_{\mathrm{B}}} \times \sigma_{\mathrm{B}}$
12. Ex-post Performance Measurement:
$E\left(R_{A} \mid I C_{R}\right)=T C \times I C_{R} \times \sqrt{B R} \sigma_{A}$
$R_{A}=E\left(R_{A} \mid I C_{R}\right)+$ noise
13. The Expected Active Return for A Given Target Level of Active Risk: $\mathrm{E}(\mathrm{RA})=\mathrm{IR} \times \sigma_{\mathrm{A}}$
14. $\quad \mathrm{IC}=2(\%$ correct $)-1$
15. $\sigma_{c}=\left[\sigma_{x}^{2}+\sigma_{y}^{2}-2 \sigma_{x} \sigma_{y} r_{x, y}\right]^{1 / 2}$
16. Annualized Active Risk: $\sigma_{\mathrm{A}}=\sigma_{\mathrm{c}} \times \sqrt{\mathrm{BR}}$

Annualized Active Return: $E\left(R_{A}\right)=I C \sqrt{B R} \times \sigma_{A}$
17. $\quad B R=\frac{N}{1+(N-I) r}$

