Quantitative Methods

Multiple Regression

1. The General Multiple Linear Regression Model is:

 $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_k x_{ki} + \varepsilon_i$

2. Hypothesis Testing of Regression Coefficient: -

t = $\frac{b_j - b_i}{s_{\hat{b}_i}}$ (n - k - 1) degrees of freedom

- 3. P-value: Smallest level of significance for which the null hypothesis can be rejected.
- 4. P Value > a; H_0 accept (a = Significance level)
- 5. P Value < a; H₀ rejected

6. Confidence Interval:

```
b_j \pm (t_c * s_{\widehat{b}_i})
```

7.
$$SSE = \sum (y_i - \hat{y})^2 = \sum_i^2 \sigma \epsilon^{I=} \sigma(y_i^- \hat{y})$$

$$\uparrow$$

$$SEE/SER = \sqrt{\frac{\sum (x-\bar{x})^2}{n-2}} = \sqrt{\frac{\sum (\epsilon_i - \bar{\epsilon_i})^2}{n-2}}$$

If
$$\overline{\varepsilon_i}$$
=0; then:

$$=\sqrt{\frac{\Sigma \varepsilon_i^2}{n-2}} = \sqrt{\frac{SSE}{n-2}} = \sqrt{MSE}$$

8. Confidence Interval for A Regression Coefficient:

$$\hat{\mathbf{b}}_{j} \pm \left(\mathbf{t}_{c} \times \mathbf{s}_{\hat{\mathbf{b}}_{j}}\right)$$

standard error of bi

use (n-k-1) df

where K = no of independent variables

```
• S<sub>bI</sub> = f<sub>n</sub> [SEE]
```

9. Confidence interval for $\hat{y} \rightarrow$ forecasted variables:

 $\begin{array}{l} \mathsf{Y} = \widehat{Y} \pm (\mathsf{t}_c \times \mathsf{s}_f) \\ \downarrow \\ & \mathsf{S}.\mathsf{E} \text{ of } \widehat{y} \\ \mathsf{TSS} = \mathsf{SSE} + \mathsf{ESS} \\ \mathsf{SSR} \quad \mathsf{RSS} \\ & \mathsf{SSR} \quad \mathsf{RSS} \\ & \Sigma(\mathsf{yi} - \overline{\mathsf{y}})^2 = \Sigma(\mathsf{yi} - \widehat{y})^2 + \Sigma \ (\widehat{y} - \overline{y})^2 \\ \downarrow \\ & \mathsf{Can't} \text{ explain} \\ & \mathsf{ESS} / \mathsf{RSS} = \mathsf{the difference that is explained by independent variable.} \\ & \mathsf{R}^2 = \frac{\mathsf{ESS}}{\mathsf{TSS}} = \frac{\mathsf{TSS} - \mathsf{SSR}}{\mathsf{TSS}} = 1 - \frac{\mathsf{SSE}/\mathsf{SSR}}{\mathsf{TSS}} \\ \downarrow \end{array}$

Always +ve

 Predicting the dependent variable: Ŷ_i = b̂₀ + b̂₁X̂_{1i} + b̂₂X̂_{2i} + ... + b̂_kX̂_{ki}

 The F - Statistics: F- stat = MSR (one - tailed test) (RSS/ESS) Where MSR = mean regression sum of squares MSE = mean squared error (SSR/SSE)

 Coefficient of Determination:

$$R^2 = \frac{RSS}{TSS} = \frac{ESS}{TSS} = \frac{TSS - SSE}{TSS}$$

13. Adjusted R²:

$$R_a^2 = 1 - \left[\left(\frac{n-1}{n-k-1} \right) \times (1 - R^2) \right]$$

Anova Table:

1. $R^2 = \frac{RSS}{TSS}$ $F = \frac{MSR}{MSE}$ with k and n-k-1 degrees of freedom $MSR = \frac{RSS}{K} = \frac{RSS}{1}$; K =1 for simple linear regression $MSE = \frac{SSE}{n-K-1} = \frac{SSE}{n-2}$ If K ≥ 1 ; R2 > Ra2 (No comparison of R2 & Ra2) Ra2 = 1- [($\frac{n-1}{n-k-1}$) (1-R²)]

Time-Series Analysis

1. Linear Trend Model:

 $y_{t} = b_{0} + b_{1}(t) + \varepsilon_{t}$

- 2. Ordinary Least Squares (OLS) regression: $\widehat{Y}_i = \widehat{b}_0 + \widehat{b}_1(t)$
- 3. Log Linear Trend Model: $Y_{t} = e^{b_0+b_1(t)}$
- 4. Autoregressive Model (AR): $X_t = b_0 + b_1 X_{t-1} + \varepsilon_t$
- 5. AR (p) Model:
 - $X_{t} = b_{0} + b_{1}X_{t-1} + b_{2}X_{t-2} + b_{p}X_{t-p} \dots + \varepsilon_{t}$
- 6. Autocorrelation & Model Fit:

$$t = \frac{\rho_{(e_t,e_{t-k})}}{\frac{1}{\sqrt{T}}}$$

7. Random Walk with A Drift:

 $X_{t} = b_{0} + b_{1} X_{t-1} + \varepsilon_{t}$

8. Covariance Stationarity:

```
X_{t} = b_{0} + b_{1} X_{t-1} + \varepsilon_{t}
```

9. Unit Root Testing for Non-Stationary:

$$X_{t} = b_0 + b_1 X_{t-1} + \epsilon$$

 $X_{t-}X_{t-1} = b_0 + b_1X_{t-1} - X_{t-1} + \varepsilon$

10. First Differencing:

$$\mathsf{Y}_{\dagger} = \mathsf{X}_{\dagger} - \mathsf{X}_{\dagger-1} = \mathsf{Y}_{\dagger} = \varepsilon_{\dagger}$$

$$\mathsf{Y}_{\mathsf{t}} = \mathsf{b}_0 + \mathsf{b}_1 \mathsf{Y}_{\mathsf{t}\text{-}1} + \varepsilon_{\mathsf{t}}$$

11. ARCH (1) Regression Model:

$$\hat{\epsilon}_t^2 = a_0 + a_1 \hat{\epsilon}_{t-1}^2 + \mu_t$$

12. Predicting the Variance of a Time Series: $\widehat{\sigma}_{t+1}^2 = \widehat{a}_0 + \widehat{a}_1 \widehat{\epsilon}_t^2$

Problems:

	Hetero-	Meaning	Effect	Detection	Correction
	skedasticity	$\sigma_{\epsilon i}$ not constant	binot affected	Scatter plot	Robust SE/ white
		Conditional	F-test X	Breush pagan (BP) test	corrected SE
		Based on 'x'	S _{bI} x	$n \times R^2$	Generalized least
		unconditional	t-stat -		squares
		random	inaccurate		
1	Serial	Errors terms are	S _{bIx} ↓;†stat↑	Residual plot \rightarrow the S _{bI} \downarrow	CH+ serial = Hansen
	correlation	correlated	F-test x	Type I error \rightarrow -ve S _{bI} Type II	Only serial = Hansen
		ρEi,Ej ≠ 0	Type I error	Error	Improve
				DW _{stat} = 2(I-r)	specification of
				Ha: positively correlated	model
				H_0 : not positively correlated	
1	Multi	$\mathbf{r}_{XI, X2} \neq 0$	S _{bI} ↑ x	If individual coefficients are	Omit correlation
	collinearity		b1, b2	insignificant but F-test, R ² is	independent
			unaffected	significant then $x_I x_2$	variable
			∴ Prob of type II	correlation ↑	 Stepwise
			Error 1	Multi collinearity	regression

Economics

Economic Growth

- 1. $\Delta P = \Delta G D P + \Delta (E/G D P) + \Delta (P/E)$
- Cobb Douglas Function:
 Y = TK^a L^(1-a)
- 3. Output Per Worker = Y/L = T(K/L) a
- 4. Marginal Product of Capital = $\frac{\Delta Y}{\Delta K} = \frac{\alpha Y}{K}$

(Constant)

Marginal Productivity = $\frac{\Delta Y/L}{\Delta K/L}$, K \uparrow L = constant

(Diminishing)

- 5. MP K = r (Marginal cost of K)-> rental price of capital
- 6. Growth Accounting Relation:

 $\Delta \mathsf{Y}/\mathsf{Y} = \Delta \mathsf{A}/\mathsf{A} + \alpha \left(\Delta \mathsf{K}/\mathsf{K} \right) + (\mathbf{I} \text{-} \alpha) \left(\Delta \mathsf{L}/\mathsf{L} \right)$

- 7. Growth in Potential GDP = i) Long Term Growth of Technology + α (Long Term Growth of K) + (I- α) (Long-Term Growth of L)
 - ii) Long Term Growth of Labour Force + Long Term Growth in Labour Productivity (Output Per Worker) Both Capitals Depending + Technology Process.
- 8. Labour Force Participation = $\frac{\text{Labour Force}}{\text{Working Age Population}}$

Where Labour Force = Employed + Unemployed Available to Work.

- 9. G* (Growth of Output Per Capita) = $\frac{\theta}{1-\alpha}$
- 10. G* (Growth of Output) = $\frac{\theta}{1-\alpha} + \Delta L$

Financial Statement Analysis

- 6. Expected Return = Expected rate x Beginning plan Asset
- 7. Net Int cost/ income = Disc. Rate x Beginning funded status (A-L)
- 8. For IFRS, disc rate & expected return is same
- 9. Periodic pension cost in OCI = TPPC periodic pension cost in P/L Or

Actuarial Gains/ losses +(Actual - expected) return

10. To reclassify:

- Op. income + Full pension exp current SC
- Add int cost to int exp.
- Add Actual return to other (non -operating) income.
- 11. Contⁿ > TPPC -> reduction in PBO

Contⁿ < TPPC => source of borrowing

From CFO -> (+)

CFF -> (-)

Evaluating Quality of Financial Reports

```
The Beneish Model (M-score):
1.
                    DSRI: \frac{\text{Days Rec}_{t}}{\text{Days Rec}_{t-1}} \uparrow X
          i.
                    GMI: \frac{Gross Margin_{t-1}}{C} \uparrow X
          ii.
                               Gross Margin<sub>t</sub>
                                Noncurrent asset except PP & ET_t/_{Total Assets_t} \uparrow X
                    iii.
                                 \frac{\text{Sales}_{t}}{\text{Sales}_{t-1}} \uparrow
          iv.
                    SGI:
                                                       Х
                    \mathsf{DEP:} \tfrac{\mathsf{Depreciation}_{t-1}}{\mathsf{Depreciation}_{t}} \uparrow \mathsf{X}
          ۷.
                                   \frac{\text{\%SGA/sales}_{t}}{\text{\%SGA/sales}_{t-1}} \uparrow X
          vi.
                    SGAI:
                    Accruals: \frac{\text{Income Before EOI-CFO}}{\text{Accruals}} \uparrow X
          vii.
                                                   Assets
          viii. Leverage Index: \frac{D/A_t}{D/A_{t-1}} (*higher the better)) X
2.
          Gauging Earning Persistence:
                   Earnings_{(t+1)} = \alpha + \beta_1 earnings_t + \varepsilon
                   Earnings<sub>(t+1)</sub> = \alpha + \beta_1 cash flow + \beta_2 accruals + \epsilon
```


Financial Statement Modeling

1.	Cost of Goods Sold (COGS):				
	orecast COGS = (Historical COGS/revenue) x (Estimate of Future Revenue	:)			

2. Financing Cost:

Net debt = Gross debt - Cash, cash equivalents & short-term investment.

Net interest expense = Gross Interest Expense - Interest Income (on cash & short- term debt securities)

- 3. Gross (net) interest expense rate = gross (net) expense/ gross (net) debt
- 4. Yield on average cash = interest income / cash + ST securities.
- 5. Effective tax rate = $\frac{\text{Income tax expense}}{PBT}$ Cash tax rate = $\frac{\text{Cash taxes paid}}{PRT}$
- 6. Projected Accounts Receivables = Days Sales Outstanding $x\left(\frac{\text{Forecasted Sales}}{365}\right)$
- 7. ROC = $\frac{\text{Net Operating Profit}}{D+E} \rightarrow \text{Not adjusted for taxes}$ ROIC = $\frac{\text{NOPLAT}}{D+E} \rightarrow \text{Net operating profit} - \text{taxes}$ ROE = $\frac{\text{NI}}{E} \rightarrow \text{Not suitable for comparing companies with different capital structures}$
- 8. Cannibalization rate = new product sales that replace existing product sales

total new product sales

Corporate Issuers

Analysis of Dividends and Share Repurchases

- 1. **Effective tax rate** = corporate tax rate + (1 corporate tax rate) (individual tax rate)
- 2. **Expected increase in dividends** = [(expected earnings × target payout ratio) previous dividend] adjustment factor
- 3. **FCFE coverage ratio** = FCFE / (dividends + share repurchases)
- 4. Grinold-Kroner model: ERP = $[DY + \Delta P/E + i + G \Delta S] r_f$
- 5. Cost of equity based on DDM: Cost of equity (r_e) = dividend yield (DY) + capital gains yield (CGY)
- 6. **Fama-French model:** Required return of stock = $r_f + \beta_1 ERP + \beta_2 SMB + \beta_3 HML$
- 7. Five-factor Fama-French extended model: Required return of $stock = r_f + \beta_1 ERP + \beta_2 SMB + \beta_3 HML + \beta_4 RMW + \beta_5 CMA$
- 8. Expanded CAPM for private companies: Required return = $r_f + \beta_{peer} \times ERP + SP + IP + SCRP$
- 9. **Build-up approach:** Required return = $r_f + ERP + SP + SCRP$
- 10. Premium Paid Analysis: Premium = (DP-UP) / UP

= (deal price - unaffected price) / unaffected price

11. Gross profit margin =
$$\frac{gross profit}{net sales}$$

12. Operating profit margin = $\frac{operating profit}{net sales} = \frac{EBIT}{net sales}$
13. Net profit margin = $\frac{net income}{net sales}$
14. Return on assets = $\frac{net income}{average total assets}$
15. Return on total capital = $\frac{EBIT}{(interest bearing debt + shareholders' equity)}$
16. Return on total equity = $\frac{net income}{average total equity}$
17. Financial leverage ratio = $\frac{total assets}{total equity}$
18. Long-term debt-to-equity ratio = $\frac{total long-term debt}{total equity}$
19. Debt-to-equity ratio = $\frac{total debt}{total equity}$

Equity

Equity Valuation: Application & Processes

- 1. IV analyst price = (IV actual price) + (IV analyst IV actual)
- 2. Conglomerate Discount = Sum of individual parts Sum as a whole.

Discounted Dividend Valuation

DDM Model:

1. One Period - D_1+P_1

$$P_0 = \frac{B_1 + R_1}{I + R_e}$$

2. Two period -

$$P_0 = \frac{D_1}{1+R_e} + \frac{D_2 + P_2}{(1+R_e)^2}$$

3. Multi period -

$$P_0 = \frac{D_1}{1+R_e} + \frac{D_2}{(1+R_e)^2} + \dots + \frac{D_n + P_n}{(1+R_e)^n}$$

4. Gordon Growth Model:

$$\mathsf{P}_0 = \frac{\mathsf{D}_1}{\mathsf{R}_e - \mathsf{g}}$$

- 5. Present value of growth opportunities (PVGO): $P_0 = \frac{E_1}{R_e} + PVGO$
- 6. Justified trailing P/E:

$$\frac{P_0}{E_0} = \frac{(I+g)(I-b)}{R_e-g}$$

Justified leading P/E:

$$\frac{P_0}{E_1} = \frac{(I-b)}{R_e - g}$$

- 7. Value of perpetual preferred shares = $\frac{D_p}{r_p}$
- 8. Valuation using H Model

$$V_{0} = \frac{D_{0}(1+g_{L})}{R_{e}-g_{L}} + \frac{D_{0} x t/_{2} x (g_{S}-g_{L})}{R_{e}-g_{L}}$$

9. Sustainable growth rate:

$$SGR(g) = b \times ROE$$

Where, ROE =
$$\frac{\text{NI}}{\text{Stockholders' Equity}}$$
 = $\frac{\text{NP(NI)}}{\text{sales}} \times \frac{\text{Sales}}{\text{Total Assets}} \times \frac{\text{Total Assets}}{\text{Stockholders' Equity}}$
 $\therefore g = \left(\frac{\text{Net Income} - \text{Dividends}}{\text{Net Income}}\right) \times \frac{\text{Net Income}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Total Assets}} \times \frac{\text{Total Assets}}{\text{Stockholders' Equity}}$

- 10. Intrinsic value > market value \rightarrow undervalued
- 11. Intrinsic value = market value \rightarrow fairly valued
- 12. Intrinsic value < market value \rightarrow overvalued

Free Cash Flow Valuation

- 1. FCFF 4 Approaches:
 - i. FCFF = NI + NCC + Interest (1 TAX) fC Investment WC Investment
 - ii. FCFF = NI + NCC WC Investment + Interest (1 TAX) fC investment
 = CFO + Interest (1 TAX) FC Investment
 - iii. FCFF = EBIT (1 TAX) + Depreciation fC investment WC investment
 - iv. FCFF = EBITDA (1 TAX) + (Depreciation X TAX) fC investment WC investment
- 2. FCFE 4 Approaches:
 - FCFE = FCFF Interest (1 TAX) + NET Borrowings
 - FCFE = NI + NCC WC Investment FC Investment + Net Borrowings
 - FCFE = CFO FC Investment + Net Borrowings
 - FCFE = NI (1- DR) [(FC Investment Depreciation) + WC Investment]

: $1 - DR = 1 - \frac{D}{A} = \frac{A - D}{A} = \frac{E}{A}$

3. Single Stage FCFF / FCFE Model:

FCFF: Value of Firm = $\frac{\text{FCFF}_1}{\text{WACC}-g} = \frac{\text{FCFF}_0 \times (1+g)}{\text{WACC}-g}$ FCFE: Value of Equity = $\frac{\text{FCFE}_1}{r-g} = \frac{\text{FCFE}_0 \times (1+g)}{r-g}$

- 4. Terminal Value in year n= (trailing P/E) x (earnings in years n)
- 5. Terminal Value in year n = (leading P/E) x (forecasted earnings in year n +1) = $\frac{p}{E} \times E_0(1+g)$

- 15. Momentum indicator:
 - i. Earnings Surprise = Reported EPS Expected EPS
 - ii. Standardized Unexpected Earnings (SUE) = $\frac{\text{earnings surprise}}{\text{SD of earnings surprise}}$
- 16. Weighted Harmonic Mean = $\frac{1}{\sum_{i=1}^{n} \frac{W_i}{X_i}}$

Private Company Valuation

- 1. $V_F = \frac{FCFF_1}{WACC-g}$
- 2. $V_E = \frac{FCFE_1}{K_e-g}$
- 3. Control premium = pro rata value of controlling interest -pro-rata value of non-controlling interest.
- Adjusted control premium (applicable for MVIC multiple) = (control premium on equity) x (1 DR) [DR
 = Debt to asset ratio]
- 5. DLOC = 1 [1/ (1 + control premium)
- 6. Total discount for lack of marketability = 1 [(1 DLOC) (1 DLOM)]

Fixed Income

Valuation and Analysis Bonds with Embedded Options

Value of option embedded in a bond: 1.

V_{Call} = V_{straight} bond - V_{callable} bond

- V_{Put} = V_{Putable} bond V_{straight} bond.
- 2. OAS = Z - Call Risk
- 3. OAS = Z + Put Risk
- Effective Duration = $\frac{P_2 P_1}{2P_0 \Delta y}$ 4.
- Effective Convexity = $\frac{P_2 + P_1 2P_0}{P_0 (\Delta y)^2}$ 5.
- Market Conversion Premium Ratio = Conversion Premium × Market Per Share 6.
- Market Price of Convertible Stock 7. Conversion Value = Market Price of Stock x Conversion Ratio.
- Market Conversion Price = Market Price of Convertible bond
- 8.
- Market Conversion Premium Per Share = Market Conversion Price Stock's Market Price. 9.
- Premium Over Straight Value = Market Price of Convertible Bond -1 10. Straight Value
- 11. Put - Call Parity:
 - C P = PV (Forward price of the bond on exercise date) PV (Exercise price)

Credit Analysis Models

- 1. Present Value of Expected Losses = Expected Loss + Risk Premium - Time Value Discount
- 2. Value of Stock_T = Max (0, A_T -K)
- 3. Value of Debt_T = Min (A_{T} , K)
- 4. Probability of Default = $I - N(e_2)$ $e_1 = \frac{\ln \left(\frac{\mathrm{At}}{\mathrm{K}}\right) + \mu \left(\mathrm{T-t}\right) + \frac{1}{2} \sigma^2 \left(\mathrm{T-t}\right)}{\sigma \sqrt{\mathrm{T-t}}}$

Where μ = Annual rate of return on company's assets.

$$e_2 = e_1 - \sigma \sqrt{T - T}$$

- 5. Key rate duration total duration -> same effect if parallel shift
- Duration exposure = Add the duration 6.
- 7.
- Effective Duration = $\frac{P_2 P_1}{2P_0 \Delta y}$ Effective Convexity = $\frac{P_2 P_1}{P_0 (\Delta y)^2}$ 8.
- % Δ Bond Price = $-\Delta y \times ED = \frac{1}{2} \times EC \times (\Delta y)^2$ 9.
- 10 VCB = VNCB - Call Price
- 11. VPB = VN PB + Put Price

Credit Default Swaps

- 1. Pay-out Amount = pay-out Ratio x NP
- 2. Pay-out Ratio = I (Recovery Rate) %
- 3. Hazard rate/ conditional Prob. Of default = Prob. (PD/ Default has not occurred)
- 4. Expected Loss = Hazard Rate x LGD (% terms)
- 5. Upfront payment = PV (protection leg) PV (premium leg)
 ↓
 ↓
 ↓
 Based on CDS spread Based on coupon rate
- 6. Upfront Premium = (CDS spread CDS coupon) x duration of spread
- 7. Price of CDS = 100 Upfront Premium (%)
- 8. Valuation After Inception of CDS:
 Profit for protection buyer ≈ (Aspread x duration) x Notional Principal Or,
 Profit for protection buyer (%) ≈ change in spread (%) x duration

Derivatives

Valuation of Contingent Claims

1. Put - Call Parity:

$$C_0 + \frac{X}{(1+R_F)^T} = P_0 + S_D$$

 $H = \frac{C^+ - C^-}{S^+ - S^-}$

2. Black - Scholes Model:

$$Co = SO N(d1) - e^{-rt}XN(d_2)$$

Po = $e^{rt}XN(-d_2) - SO N (-d1)$
Where:

$$d1 = \frac{\ln\left[\frac{S}{X}\right] + (r + \frac{\sigma^2}{2}) T}{\sigma \sqrt{T}}$$
$$d2 = d1 - \sigma \sqrt{T}$$

3. Options on Dividend Paying Stocks:

$$Co = S0 e^{-\delta T} N(d1) - e^{-rt} N(d_2)$$

$$P0 = e^{-rt}N(-d_2) - S0 \ e^{-\delta T}N(-d_1)$$

Where $\boldsymbol{\delta}=$ Continuously Compounded Dividend Yield

$$d1 = \frac{\ln(\frac{S}{X}) + (r - \delta + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$
$$d2 = \frac{d_1 - \sigma\sqrt{t}}{\sqrt{T}}$$

- 4. Options on Currencies: $Co = S0 e^{-rBT}N(d1) - e^{-rPT}N(d_2)$ $P0 = e^{-rPT}N(-d_2) - S_0 e^{-rBT}N(-d_1)$
- 5. The Black Model: -

$$Co = \frac{F_{T}}{e^{rt}} N(d_{1}) - \frac{X}{e^{rt}} N(d_{2})$$

Where, $d1 = \frac{\ln(\frac{F_{T}}{x}) + (\frac{\sigma^{2}}{2})t}{\sigma\sqrt{t}}$
 $d2 = \frac{d_{1} - \sigma\sqrt{t}}{\sqrt{t}}$

6. Interest Rate Options:

$$Co = \frac{AP}{e^{r(N \times \frac{30}{360})}} [FRA (M*N) N (d1) - XN (d2)] X NP$$

Where: AP = Accrual Period = $\frac{\text{Actual}}{365} = \left[\frac{(N-M) \times 30}{360}\right]$

- $\ensuremath{\mathrm{NP}}=\ensuremath{\mathsf{Notional}}$ Principal on the FRA.
- 7. Swaptions:

 $V_{payer swaption}$ = PVA [SFR. N (d₁) - XN (d₂)] × NP × AP

- 8. ΔC = Call Delta × Δs + $\frac{1}{2}$ Gamma × Δs^2
- 9. ΔP = Put Delta x Δs + $\frac{1}{2}$ Gamma x Δs^2

Alternative Investments

Introduction to Commodities and Commodity Derivatives

- 1. Total Return = Collateral Return (HPY on T-bill) + Price Return $\left(\frac{P_1-P_0}{P_0}\right)$ + Roll Return
- 2. Price Return = $\frac{Current Price Previous Price}{Previous Price}$
- 3. Roll Return = $\frac{\text{Price of Expiring Futures Contract} \text{Price of New Futures Contract}}{\text{Price of Expiring Futures Contract}}$

Portfolio Management

Measuring and Managing Market Risk

- 1. $\sigma_{Portfolio}^2 = W_A^2 \sigma_A^2 + W_B^2 \sigma_B^2 + 2W_A W_B Cov_{AB}$
- 2. E(Ri) = Rf + Betai [E(RMKT) Rf]
- 3. Change in Price = Duration $(\Delta Y) + \frac{1}{2}$ Convexity $(\Delta Y)^2$
- 4. Change in Call Price = delta (ΔS) + $\frac{1}{2}$ gamma (ΔS)2 + vega (ΔV)
- 5. Discount Rate = $R + \pi + \theta + \gamma + K + \phi$
- 6. Inter temporal Rate of Substitution = $\frac{U_t}{U_0} = \frac{Future}{Current}$
- 7. PO = E(mt)
- 8. Real Risk-free rate of Return: R = $\frac{1 - P_0}{r} = \left(\frac{1}{r}\right) - 1$

9.
$$P_0 = \frac{E(P_1)}{P_0} + cov(P_1)$$

- P_o = $\frac{E(P_1)}{I+R}$ + cov (P₁, M₁) P_o is lower; Return ↑ (Since Risk Taken) $\frac{E(P_1)}{I+R}$ When no risk = P_o
- 10. Disc. Rate = $R+\pi$ (short term)
- R+π+ θ (long- term)
- 11. Taylor Rule: $r = Rn + \pi + 0.5 (\pi \pi^*) + 0.5 (\gamma \gamma^*)$
- 12. BEI = Yield on Non-Inflation Indexed Bond Yield on Non-Inflation Indexed Bond

Analysis of Active Portfolio Management

- 1. Active Return E (R_A) = E (R_P) E (R_B)
- 2. For an Active Portfolio of N Securities: E (R_A) = $\sum \Delta w_i E(R_i)$
- 3. Weighted Average of Securities Returns: $E(R_P) = \sum w_{P,i}E(R_{P,i})$ and $E(R_B) = \sum w_{B,i}E(R_{B,i})$
- 4. Ex ante Active Return:

 $\mathsf{E}(\mathsf{R}_{\mathsf{A}}) = \sum w_{\mathrm{P},i} \mathsf{E}(\mathsf{R}_{\mathrm{P},j}) - \sum w_{\mathrm{B},i} \mathsf{E}(\mathsf{R}_{\mathrm{B},j})$

5. Security Selection Return:

 $\mathsf{E}(\mathsf{R}_{\mathsf{A}}) = \sum \Delta w_i E(\mathsf{R}_{\mathrm{B},j}) + \sum w_{\mathrm{P},i} E(\mathsf{R}_{\mathrm{A},j})$

- 6. Sharpe Ratio = $\frac{R_P R_F}{\sigma_p}$
- 7. IR = $\frac{R_P R_B}{\sigma_{(R_P R_B)}}$
- 8. With Optimal Level of Active Risk:

 $SR_{P} = \sqrt{SR_{B}^{2} + IR^{2}}$

Total Risk of The Portfolio: σ_P^2 = σ_B^2 + σ_A^2

9. Unconstrained:

 $IR* = IC \times \sqrt{BR}$

 $E(R_A)^* = IC\sqrt{BR}\sigma_A$

10. Constrained:

$$IR = IC \times \sqrt{BR} \times TC$$
$$E(R_A) = IC \times \sqrt{BR} \times TC \times \sigma_A$$
$$SR_{pc} = \sqrt{SR_{\beta}^2 + (IR^2 \times TC)}$$

11. $\sigma_{CA} = \frac{T_{C \cdot IR^*}}{SR_B} \times \sigma_B$

12. Ex-post Performance Measurement:

 $\mathsf{E} (\mathsf{R}_{\mathsf{A}} | \mathsf{I} C_{\mathsf{R}}) = \mathsf{T} C \times \mathsf{I} C_{\mathsf{R}} \times \sqrt{\mathsf{B} \mathsf{R}} \sigma_{\mathsf{A}}$

 $R_A = E(R_A | IC_R) + noise$

- 13. The Expected Active Return for A Given Target Level of Active Risk: E (RA) = IR $\times \sigma_A$
- 14. IC = 2(% correct) 1

15.
$$\sigma_c = [\sigma_x^2 + \sigma_y^2 - 2 \sigma_x \sigma_y r_{x,y}] \frac{1}{2}$$

16. Annualized Active Risk: $\sigma_A = \sigma_c \times \sqrt{BR}$

Annualized Active Return: E(R_A) = IC $\sqrt{BR} \times \sigma_A$

17. BR =
$$\frac{N}{1+(N-I)r}$$